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Abstract 

Alzheimer’s disease (AD) is one of the most common multifactorial diseases, including a range of 
abnormal cellular/molecular processes occurring in different regions of the brain. This disease is 
considered to be a major contributor to dementia in the elderly people. The pathophysiology involves 
accumulation of extracellular plaques containing the β-amyloid protein which is generated by the 
breakdown of the β-amyloid precursor protein (APP) in the brain. Another mechanism involves 
formation of intracellular neurofibrillary tangles of hyperphosphorylated tau protein. The AD can be 
classified into two types, familial AD (FAD) and sporadic AD (SAD) based on heritability apart from this 
the early-onset AD (EOAD) and late-onset AD (LOAD) forms are based on the age of onset. Some 
proteins, such as APOE, APP, BACE (b-amyloid cleaving enzyme), secretases, PS1/2 and tau proteins are 
reported in AD brain and have been correlated with disease. It is still unclear whether this disease 
comprises genetic or environmental factors or both. Many palliative drugs are available for the disease but 
there is still thirst for curative drugs with greater efficacy. It is required to understand the key factors 
involved in disease progression and their suitability as drug targets for discovering new drugs against 
Alzheimer's disease. Main purpose of this review is to highlight the potential targets for Alzheimer’s 
disease that have been studied in recent years. 
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Introduction 
Today around 47 million people survive with 

dementia, globally. This number is projected to 
increase to more than 131 million by 2050 [1]. About 
2.1 million Alzheimer’s patients having age of 85 
years or older were reported in year 2017[2]. 
Alzheimer’s disease (AD) is one of the most common 
neurodegenerative disorders that causes dementia 
and it is characterized by amyloid deposition of a 
39-42 AA peptide (Aβ) processed from the amyloid 
precursor protein (APP) and NFT. Genetic effects of 
APP and PSEN1/2 are also responsible for 
progression of the disease [3, 4, 5, 6] (Figure 1, 2). 
More than 95% cases of the AD are sporadic, where 
older age, low education degree, hypertension, 
hyperlipidaemia, heart disease; apolipoprotein E 
(ApoE) 4 allele polymorphism and diabetes are 
among the main factors responsible for the 
development of the disease. According to “amyloid 
cascade hypothesis” when processing of APP by β 

and γ-secretase forms Aβ40 and Aβ42 peptides which 
further undergo aggregation and oligomer formation 
and finally cause formation of Amyloid plaques. [7, 8].  

Alzheimer's Drug Targets 
 Currently many targets are being considered for 

anti-Alzheimer’s drug discovery. Some of these drug 
targets are already having known inhibitors while 
others are still being studied for designing suitable 
ligands against them. Such targets have been 
described in Table 1 along with their sources and 
known function. 

β-Secretase: Aspartyl Proteases(BACE) 
BACE is a novel target having 501 amino acids, a 

type 1 transmembrane aspartic protease, related to the 
pepsin and retroviral aspartic protease families. BACE 
is known to have highest expression level in human 
brain. BACE antisense oligonucleotide treatment to 
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APP overexpressing cells is reportedly responsible for 
decreased production of β -secretase cleaved APP 
fragments. Recent studies suggest that levels of 
BACE1 protein and their activity was raised to 
approximately double in AD patient where BACE1 
might initiate or enhance AD pathogenesis. The 
enzyme's key role in generation of Aβ, which is a 
major component of APP metabolism makes it 
popular target for drug development [9, 10, 11, 12, 13, 
14]. 

γ-Secretase: Presenilin I 
γ-Secretase complex has 170kDa MW with an 

additional 30-70kDa MW derived from nicastrin 
glycosylation [15] reaching up to total size 230kDa 
with 19 TMs (Transmembrane-segment) that belong 

to the family of intramembrane cleaving protease, 
consist of Aspartyl protease, Zinc mettaloprotease 
site-2 protease family and serine protease. 
γ-Secretases are multi-subunit enzyme complexes 
having proteolytic activity and play a vital role in 
generation of Aβ [16,17]. 

Butyrylcholinesterase (BuChE) 
Butyrylcholinesterase (BuChE) is a hydrolase 

which is responsible for hydrolysing esters of choline 
[18]. Degeneration of basal forebrain cholinergic 
system is an indication of the AD [19,20]. Studies have 
found that BuchE biochemical properties were 
changed in the neurodegenerative disease like in AD. 
Due to loss of neurons Ach and AchE levels expressed 
in the high amount which was responsible for the 

 

 
Figure 1: Hypothetical model of AD pathophysiology (Pathophysiological pathway and Amyloidgenic pathway)  

 
Figure 2: Pathophysiology and factors (Mutations, NFT, Oxidative stress, mitochondrial dysfunction) involved in AD 
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reduction of neurotransmitter and its enzyme [21, 
22,23]. In cortical region BuchE level is increased 
during AD which is responsible for neuritic plaques 
and neurofibrillary tangle formation [19,24,25, 
26,27,28,29]. 

Calcium-permeable AMPA receptors 
(CP-AMPARs) 

AMPAR refers to one of the fastest excitatory 
neurotransmitters in the Central nervous system that 
are related to ionotropic glutamate receptors. It is 
involved in regulation of CP-AMARs in 
electrophysically produced synaptic plasticity and 
could be a therapeutic target for AD patients and 
other neurodegenerative disease. During Long-term 
potentiation (LTP) induction CP-AMPARs are 
employed from perisynaptic pools to contribute 
boosting synaptic Ca2+. [23]. 

 Some researches suggests that CP-AMPAR is 
involved in the onset of synaptic pathology and 
formation of AMPAR and thus it is a therapeutic 
target for Alzheimer disease and other 
neurodegenerative Disease [30,31,32,33]. 

Calcitonin gene- regulated peptide (CGRP)  
CGRP plays an important role as a potent 

vasodilator. It is known as a neurotransmitter in the 
Central nervous system [34] which contains 37 amino 
acids. It is distributed in different parts of the brain 
like hypothalamus, ventromedial nucleus of the 
thalamus, amygdala, grey matter, hippocampus and 
denate gyrate [35]. CGRP also helps in improving 
learning and memory processing [36]. 

Phosphodisterase (PDE) 
PDE consist of a group of enzymes which control 

the rate of cAMP and cGMP hydrolysis and also 
contain 11 types of protein family members [37]. In 
brain regions like hippocampus, cortex stratium PDE 
isoforms play a crucial role in hydrolysis of cGMP 
[38,39,40,41,42,43,44] and intracellular signalling 
cascades. Studies suggest PDE2A, PDE5 as well as 
PDE9 are involved in memory formation [45, 43, 46, 
47,48,49,50, 51, 52]. 

Muscarinic acetylcholine receptor (mAchR) 
Muscarinic acetylcholine receptors (mAchR) 

belong to G-protein coupled muscarinic family and 
have some important functions like central 
cholinergic transmission learning and memory 
process [53,54]. M1 type of mAchR stimulates 
dephosphorylation of tau in PC12 cells which is 
responsible for alteration of hyperphosphorylation of 
tau protein and NFT pathology [55]. mAchR subtypes 
facilitate a variety of presynaptic and postsynaptic 
actions in hippocampus regions. In the hippocampus, 

presynaptic mAchRs reduces excitatory and 
inhibitory responses [56, 57, 58] and some studies 
suggest that different subtypes inhibit Aspartate, 
glutamate, g-Ambiobutyric acid and Acetylcholine 
[59]. Autoreceptors like M2, M2-cardiaclike and 
M2-non-cardiac like and M4 [60] [61] inhibit the Ach 
release in hippocampus [62, 63]. M1, M2 and M4 
proteins are also found in forebrain region in case of 
AD patient [64]. M1 and M2 also play an important 
role in learning and memory process in other brain 
regions [65, 66, 67]. 

Dopamine 2 receptor 
Dopamine 2 receptor belongs to GPCR family, 

involved in neural signaling that trigger many 
important behavioural processes. Dopamine which 
acts as major neurotransmitter is released by 
dopaminergic neurons to govern movement, 
cognition, and emotion in CNS. Studies performed on 
AD mouse model suggest that Levodopa, a chemical 
that is converted into dopamine in body, has 
protective effect in learning and memory process and 
also reduced Aβ plaques number and size [68, 69, 70]. 

Gama aminobutyric Acid A receptor (GABA) 
In human nervous system (mainly CNS), GABA 

plays a crucial role as inhibitory neurotransmitter. 
GABA receptor directly act on membrane potentials 
via ionic, control short and long term neuronal 
activity, synaptic plasticity and network plasticity [71, 
72, 73, 74, 75]. GABA and small proportion of 
somatostatin are used as a neurotransmitter in 
cerebral cortex [76]. Some evidence show that in 
post-mortem brain, GABA concentration declined in 
temporal, frontal and occipital lobes [77, 78, 79]. 

Nuclear factor E2 related factor-2 (Nrf2) 
Nrf2 refers to a transcriptional activator of cell 

protection genes which also acts a therapeutic target 
for the treatment of neurodegenerative diseases 
including AD. Nrf2 targets contain cellular defence 
genes having drug metabolising enzymes, antioxidant 
response elements, DNA repair enzymes, molecular 
chaperons and proteasome subunits. These genes are 
involved in maintaining cellular redox balance and 
eliminating damaged proteins. Cellular stresses like 
oxidative damage was reportedly increased in case of 
AD [80,81]. Few studies suggest that xenobiotic 
metabolism is reduced in AD patients as well as 
APP/PS1 mutant mouse models [82,83]. Over 
expression of Nrf2 also protects against toxicity 
produced by Aβ 42 peptide in AD patients [84,85]. 
Nrf2 activity is regulated by Keap and GSK-3. Further 
GSK-3 plays a role in the pathogenesis of AD [86,87]. 
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Gamma-secretase metabotropic glutamate 
receptor 

Glutamate is known as primary excitatory 
neurotransmitter found in brain which activates G 
protein-coupled metabotropic glutamate receptors 
and ionotropic glutamate receptors [88]. Disruption in 
normal mGlu5 signalling is responsible for several 
neurodegenerative diseases like AD, Parkinson and 
Huntington disease [89,90]. mGluR5 binds to the 
heterotrimeric G-protein Gαq/11, which triggers 
phospholipase-C resulting in increased inositol-1,4,5 
triphosphate formation and releasing of ca2+ from 
intracellular vesicles [91]. Studies suggest that 
mGluR5 also acts as receptor for Aβ42 and cellular 
prion protein (PrPc) [92,93,94,95,96,97].  

N-myc downstream-regulated gene 2 
(NDRG2) 

N-myc downstream- regulated gene 2 is a family 
of genes having several functions like having role in 
differentiation, cell proliferation, and cell apoptosis. 
The NDRG comprises four members 
NDRG1-NDRG4. It has been observed that NDRG2 
upregulation in AD models is involved in aging of 
brain [98, 99]. 

Serotonin 5-HT6 receptor 
Serotonin 5HT6 was discovered in 1993 and 

studies suggest that 5-HT6 receptor has a crucial role 
in the targeting AD by improving cognition 
dysfunction, synaptic plasticity, neurogenesis and 
survival of neurons in adult brain. In AD patient 
5HT6 receptor showed significant reduction in 
cortical areas. Blockage of 5-HT6 receptor induced 
acetylcholine release and also affects Gabaergic and 
Glutamergic systems. Further, it has also been found 
that dysregulation of the 5-HT6 receptor in temporal 
cortex may be associated with behavioural symptoms 
in AD [100,101]. 

Protein tyrosine phosphatase 1B (PTP1B) 
PTP1B belongs to phosphatases involved in the 

relevant modulation of signalling pathways triggered 
by the initiation of the tyrosine kinase receptor family 
[102]. Studies suggested that PTP1B is involved in 
many important functions like learning, memory, 
endoplasmic reticulum, stress, regulation of synapse 
dynamics and microglial mediated neuroinflam-
mation [103,104, 105,106;107]. Higher expression of 
PTP1B is observed in hippocampal microglial regions 
and it is involved positive regulation of 
neuroinflammation [108]. 

Monoamine oxidase B (MAO-B) 
MAO is the type of enzyme found in an outer 

layer of mitochondrial membrane and plays a key role 

in the metabolism of monoamine neurotransmitter 
[109,110]. MAO-B has been reported in the 
pathogenesis of AD in the astrogila region. 
Upregulation of MAO-B is also responsible for the 
production of Reactive oxygen species (ROS) and 
H2O2 which leads to AD pathology [111]. MAO has 
two isoforms MAO-A and MAO-B [112]. Studies 
suggested that MAO-B expression is increased in 
different regions like the hippocampus, cerebral 
cortex and astrocyte contribute to the AD. 

NAD(P)H Quinone oxidoreductase 1 (NQO1) 
NAD(P)H Quinone oxidoreductase 1 is a type of 

redox regulated flavoenzyme which is also known as 
cytosolic homodimeric flavoprotein. It plays an 
important role in monitoring cellular redox state. 
NQO1 triggers two electron reductions of quinones 
and related molecule aimed to enhance their solubility 
and excretion. Reports suggest that NQO1 is involved 
in maintaining oxidative stress, abnormality in redox 
balance in AD patient [113; 114]. NQO1 could be a 
novel therapeutic target for the AD. 

Neurotrophic Receptor Tyrosine Kinase 1 
(NTRK1) 

NTRK1 receptors are produced by NTRK1 gene 
which belong to the family of nerve growth factor 
receptors that contain neurotrophin as a ligand. 
Neurotrophin helps in regulation and development of 
CNS and PNS [115,116,117].Expression of NGF 
receptors of NGF receptors p75 (NTR) and TrkA occur 
in basal forebrain nucleus basalis (NB) which is 
responsible for the promotion of cell survival. These 
cells are degraded in the AD [118,119,120,53,121, 
122,123]. 

Amyloid protein precursor (APP) 
Human APP gene was first discovered in 1987 

from β-amyloid [124] and the gene was mapped to 
chromosome 21 [125,126]. APP belongs to membrane 
proteins containing extracellular domain and short 
cytoplasmic region. APP releases Aβ by two cleavage 
processes, one in the extracellular domain (β-secretase 
cleavage) and another one in the transmembrane 
region (γ-secretase cleavage). Different types of APP 
proteins can be formed by alternative splicing from 
the single gene. APP695 is a major splice form in 
neurons [127]. APP is cleaved by two different 
proteolytic pathways, one is a non-Amyloidogenic 
and other one is Amyloidogenic pathway. For this 
process, two main enzymes γ-secretase and 
β-secretase are responsible [128,129,130] (Figure 3). 

Peroxisome proliferator activated 
receptor-γ(PPARs) 

PPARs consist of nuclear hormone receptors that 
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contain 48 human ligand inducible transcription 
factors. Their activity is regulated by lipid metabolites 
and steroids [131]. PPARs have three types of 
receptors PPAR-α, PPAR-β and PPAR-γ. PPARs are 
involved in many functions like lipid storage, 
adipocyte differentiation, lipid storage and glucose 
homeostasis in many organs like brain, adipose tissue, 
placenta and skin [132].Studies suggested that PPARs 
show a wide range of effect in AD pathophysiology 
through several animal models. PPAR- γ activation 
leads to an increase in APOE and ABCA1 levels in 
astrocytes and microglial cells [133,134,135,136,137, 
138,139,140,141,142,143]. 

C-C chemokine receptor type-5 
Chemokines belong to an expanding family of 

cytokines a(CXC), b(CC), g(C) and (CX3C) that are 
involved in the recruitment of leukocytes to 
inflammatory sites. Previous studies suggest that 
interleukin (IL-8) receptor B is found in cortical 
neurons, hippocampal and in neuritic plaques of AD 
brains [144,145,146,147,148,149,150]. 

Nicotinergic acetylcholine receptor (nAChR) 
nAChRs, which belong to ligand-gated ion 

channels, comprise of five subunits. Higher 
expression of it's α-subunit is found in brain regions 
related to cognitive, memory function. nAChR is also 
involved in the progression of sensory information 
which shows the involvement of nAChr in the AD 
[151,152]. Some studies suggest that β-amyloid is 
responsible for triggering tau phosphorylation via 
several signalling pathways, free radical formation, 
lipid peroxidation, cell membrane damage and 
oxidative stress (153,154,155). It is also reported that 

α3 and α6 are also present in the brain [156,157]. 
Post-mortem brain sample studies showed the 
alteration of α4 & α7 nAchR in AD patients 
[158,159,160].  

Angiotensin receptor 
Angiotensin (AT) receptors, mainly AT1 receptor 

[161], play a vital role in peripheral activity and brain 
processes. Studies demonstrate that Angiotensin II 
receptor blockers (ARBs) are directly involved in 
neuroprotection in different part of brain like 
astrocyte, neurons, microglia and cerebrovascular 
endothelial cells [162]. ARBs are involved in many 
functions like anti-inflammatory compounds, 
inflammation triggered by glutamate excitotoxicity 
[163] and they also help in hippocampal synaptic 
signaling [164,165]. 

Non-amyloid-beta component 
precursor (NACP) 

NACP is the type of presynaptic protein which is 
involved in amyloidogenesis and plaque formation 
[166,167,168,169,170]. NAC consists of long precursor 
(NACP) which produces NACP140 and NACP 112. 
[171,172]. Recent studies showed that NACP is a 
presynaptic nerve terminal protein [173,174,175] 
involved in neural plasticity, learning, and 
degeneration under the pathological condition in the 
AD. 

c-Jun N-terminal kinases (JNK) 
JNK which is also known as stress-activated 

protein kinase is triggered by exterior noxious stimuli 
via a kinase cascade [176; 177]. Activation of JNK 
phosphorylates serine-63 and 73 residues of C-jun and 

 
Figure 3: Amyloidgenic process of APP hypothesis and formation of Aβ-42. APP protein can be processed by different enzymes like β-secretase, γ- secretase and 
α- secretase. sAPPβ and sAPPα is produced with peptides C83 and C99. 
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enhances transcription activity of AP-1 complex 
[178,179]. Studies suggested that JNK-3 has role in 
neuronal apoptosis, neural tube defects and oxidative 
stress in AD patient [180,181,182,183]. 

DJ-1/PARK7 
DJ-1 is mostly expressed in mammals and forms 

a homodimer associated with neurodegenerative 
diseases. Some factors are involved in disruption of 
DJ-1 structure like monogenic mutants and chemical 
modification of cysteine residues. PARK7 gene is 
responsible for encoding of DJ-1 which has many 
functions like an antioxidant, molecular chaperon, 
protein degeneration and transcriptional regulation. 
DJ-1 has been reported for suppression of 
neurodegenerative diseases in the animal model. DJ-1 
could be used as a therapeutic target for the AD [184]. 

Triggering receptor expressed on myeloid 
cells 2 (TREM2)  

In the previous years, genetic studies have 
helped in the identification of variants in 
immune-related genes involved in the progression of 
AD [185]. Studies suggested that TREM2 have 
high-risk factors for developing of the AD. [186,187]. 
TREM2 is expressed on myeloid cells 2 (TREM2) 
which belong to immunoglobulin superfamily. 
Expression of TREM2 in the AD brain is primarily 
overexpressed on plaque-associated myeloid cells like 
Microglia, peripheral monocytes and brain-resident 
macrophages [188,189,190,191,192]. These cells are 
responsible for causing AD pathogenesis. Studies 
reported that TREM2 deficiency helps in reducing 
accumulation of myeloid cells around plaques and 
amyloid pathology in AD mouse model. [193,194,195]. 

 

Table 1. Source and functions of all Alzheimer's disease therapeutic targets 
S.No. Name of target Source Functions References 

1.  β-Secretase Astrocyte Formation of Aβ [9,10,11] 
2.  Butyrylcholinesterase Basal forebrain Neuritic plaques and neurofibrillary tangles [19,20] 
3.  γ-Secretase: Presenilin I Medial temporal lobe cortex  Formation of Aβ [196] 
4.  CP-AMPARs Hippocampi  Boost synaptic Ca2+ [23] 
5.  Calcitonin gene- regulated peptide  Hypothalamus, ventromedial nucleus of 

the thalamus, amygdala, grey matter, 
hippocampus and denate gyrates 

Neurotransmitter [197] 

6.  Phosphodisterase (PDE) Hippocampus, Cortex stratium Hydrolysis of CGMP [38,39,40,41,42,43,44] 
7.  Muscarinic acetylcholine receptor 

(mAchR) 
Hippocampus Hyperphosphorylation of tau protein [56,58] 

8.  Dopamine 2 receptor Central nervous system Aβ plaques [68,70] 
9.  Gama aminobutyric Acid A receptor Cerebral cortex, temporal lobes, frontal and 

occipital lobes 
Neurotransmitter in cerebral cortex [71, 73,74,75,198] 

10.  Nuclear facto r E2 related factor-2 (Nrf2) Temporal lobe, microglia and astrocytes 
 

Antioxidant  
Maintaining redox balance and eliminate damage 
proteins 

[80,81] 

11.  Gamma-secretase metabotropic 
glutamate receptor 

Cortical and Hippocampal Releasing of ca2+ [91] 

12.  Parkinson disease protein 
7(DJ-1/PARK7) 

Hippocampus Antioxidant, molecular chaperon, protein 
degeneration and transcriptional regulation 

[184] 

13.  N-myc downstream-regulated gene 2 Astrocytes, glia cells Differentiation, cell proliferation and cell apoptosis [199] 
14.  Serotonin 5-HT6 receptor Cortical Improving cognition dysfunction, synaptic 

plasticity 
[100,101] 

15.  Protein tyrosine phosphatase 1B (PTP1B) Hippocampal, microglial Learning, memory, endoplasmic reticulum, stress, 
regulation of synapse dynamics and microglial 
mediated Neuroinflammation. 

[108] 

16.  Monoamine oxidase B (MAO-B) Astrogila, hippocampus, cerebral cortex 
and astrocyte 

Metabolism of monoamine neurotransmitter [111,112] 

17.  NAD (P)H Quinone oxidoreductase 1  Oxidative stress, abnormality in redox balance [113,114] 
18.  Neurotrophic Receptor Tyrosine Kinase 

1 
Basal forebrain Nucleus Basalis (NB) Development of CNS and PNS, promotion of cell 

survival 
[53,118,119,120, 121, 
122,123] 

19.  Amyloid protein precursor (APP) Hippocampus, olfactory bulb Formation of Aβ [200] 
20.  Peroxisome proliferator activated 

receptor-γ 
Astrocytes and microglial cells Lipid storage, adipocyte differentiation, and lipid 

storage and glucose homeostasis 
[132] 

21.  C-C chemokine receptor type-5 Cortical neurons, hippocampal Recruitment of leukocytes to inflammatory sites [144,145, 146,147,148, 
149,150] 

22.  Nicotinergic acetylcholine receptor Cerebral cortex Cognitive, memory function and also involve in 
progression of sensory information 

[151,152] 
 

23.  Angiotensin receptor Astrocyte, neurons, microlia and 
cerebrovascular endothelial cells 

Anti-inflammatory compounds 
synaptic signalling 

[164,165] 

24.  Non-amyloid-beta component 
precursor  

Neocortex, hippocampus, olfactory bulb, 
Striatum, thalamus, and cerebellum 

Amyloidogenesis and plaque formation [166,167,168,169,170] 

25.  c-Jun N-terminal kinases Cortex hippocampus and cerebellum Neuronal apoptosis, neural tube defects and 
oxidative stress 

 [201] 

26.  Triggering receptor expressed on 
myeloid cells 2 

Myeloid cells amyloid pathology [188,189,190] 
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Table 2: List of approved Alzheimer's drugs and their targets 

S.No. Approved drug Target References 
27.  Donepezil  Acetylcholinesterase [202,203, 204] 
28.  Rivastigmine  Acetylcholinesterase 
29.  Galantamine  Acetylcholinesterase 
30.  Memantine NMDA receptor [205] 

 

Conclusion 
Dementia is increasing rapidly in world 

population. Alzheimer's disease is an important factor 
behind development of dementia in older people. Due 
to the unclearly known mechanism of 
pathophysiology and target identification Alzheimer's 
disease treatment remains as a great challenge for 
modern drug discovery. Only few targets and drugs 
are available for the treatment of the disease. In this 
review, we have focused on several known targets 
which are directly and indirectly involved in 
generation of amyloid beta and neurofibrillary tangle 
in AD as well as other molecules. These targets are 
found in different regions of the brain like 
Hippocampus, astrocyte, glial cells, temporal, frontal 
lobe, cortex, Striatum, thalamus, cerebellum and Basal 
forebrain Nucleus Basalis (NB). These parts of the 
brain have different types of functions like synaptic 
plasticity, Long-term potentiation, memory 
formation, oxidative stress, Neuronal apoptosis, 
Anti-inflammatory, cell survival etc. Finally the 
molecules that are involved in unbalancing normal 
functioning of these functions have been highlighted 
in this review. There is urgent need to explore these 
targets for designing efficient Alzheimer's drugs with 
minimum side effects.  
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