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Abstract 

Co-infection of Kaposi sarcoma-associated herpesvirus (KSHV) and human immunodeficiency 
virus (HIV) was able to prolong the survival of patients with AIDS, but the underlying mechanisms 
are still elusive. Different from previous hypothesis such as the role of KSHV on cell 
transformation, Tan et al (J Cutan Pathol 2014; 41: 630–639. doi:10.1111/cup.12332) pointed out a 
novel insight that claudin-2 is involved in the prolonged survival of KSHV-HIV infected patients by 
increasing the transendothelial barrier function. Further, this report identified new model to study 
molecular interactions, especially DNA-RNA interaction. 
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Introduction 
Kaposi sarcoma (KS), manifested mainly by dark 

purple skin and mouth nodules, is caused by the 
infection of Kaposi sarcoma-associated herpesvirus 
(KSHV) [1]. KS, designated as an AIDS-defining 
cancer, has been one of the first recognized 
HIV-related diseases since early 1980s [2]. 
Epidemiologic and skin cancer care studies indicate 
that co-infection of KSHV and HIV interfere with the 
prognosis of aids patients in comparison with patients 
infected solely with KSHV or HIV, in which KS 
patients infected successively with HIV will have a 
prolonged survival than other AIDS patients (HIV 
mono-infection). For example, without highly active 
antiretroviral therapy (HAART), 93% of KSHV-HIV 
co-infected patients can survive longer than 3 years, 
while less than 28% of AIDS patients survive longer 

than 2 years [3-5], the involved mechanisms may be 
interesting to be defined. Previous studies were 
focused on the roles of KSHV in transformation of 
host cells roughly by interactions between 
components of KSHV and host cells. Flore et al., for 
the first time, identified the KSHV-induced 
transformation, in which infection of KSHV in human 
primary endothelial cells stimulates long-term 
proliferation and survival, this transformation is also 
evidence by KSHV related Multicentric Castleman 
disease (MCD) [6-8]. Another possibility regarding 
the prolonged survival in concurrent KSHV-HIV 
patients is about the T cell response as what Dr. Tan 
characterized [9]. Featured Th2 response in KS 
patients synergizes with predominant Th1-Th2 switch 
in AIDS patients, which will ameliorate the pathologic 
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impact of the individual infections [10, 11].  
Tan et al. [9] investigated the potential 

underlying mechanisms by microarray, and identified 
three hundred and forty-three differentially expressed 
genes, including claudin-2 [9]. Further investigation 
demonstrated that knockdown of claudin-2 in 
cultured endothelial cells enhances barrier function 
by altering the charge selectivity, but not the size 
selectivity. This study may shed some novel 
mechanistic insights underlying the prolonged 
survival of KSHV-AIDS patients. Claudin-2 was the 
first channel-forming claudin identified with 
important roles in cation permeability (especially 
cation Na+ permeability), by thus, regulates epithelial 
barrier function or endothelial barrier function, which 
is the featured marker for related inflammation [12]. 
For example, intensive investigations identified the 
role of claudin-2 in the onset and development of 
inflammatory bowel diseases (mainly gut microbe 
related diseases) by compromising the transepithelial 
barrier function [13] and pulmonary inflammation by 
regulating alveolar cell permeability [14]. On the 
contrary, the enhanced barrier by claudin-2 deficiency 
may limit further bacterial or viral penetration and 
infection [15]. 

In vivo, endothelial monolayers override on the 
extracellular matrix (ECM), and ECM is made up of 
very thin basement membrane on thick interstitial 
matrix. The interactions between monolayers and 
ECM are crucial for the homeostasis in vascular 
endothelium and endothelial barrier function [16]. 
Many different molecules are involved in the 
regulation of endothelium-ECM interactions, for 
example, integrins play important roles for the 
interaction of endothelial cells with the matrix, 
therefore, for endothelial barrier function [17], 
evidenced by the study in which treatment of cells 
with the synthetic peptide Gly-Arg-Gly-Asp-Ser 
(GRGDS), which competes with the integrin RGD 
binding domain of lamimin, vitronectin, collagen and 
fibronectin, caused cell rounding and cell detachment 
from the matrix [18]. Besides integrins, the claudin 
family is composed of more than 20 molecules and 
endothelial cells are particularly rich in claudins 4, 5 
and 16[19, 20]. Tigh junction permeability is 
significantly influenced by the type(s) of claudin 
present or absent in the endothelial cells, for example, 
pore-forming claudin2 is normally very low 
expressed in endothelial cells, which is important for 
the maintenance of endothelial barrier function [21]. 
Further, by the interaction with ECM, claudin-2 
overexpression can facilitate the metastasis of breast 
cancer [22].  

To make the data from Dr. Tan’s lab more 
valuable, it may be better to construct the KSHV-HIV 

co-infection cellular and animal model, then to specify 
the function of claudn-2 in biological process. Further, 
the study of the effect of KSHV-HIV co-infection on 
the fate of infected cells, or of patients, in the 
meantime, provided a novel model to study 
KSHV-HIV interaction, or DNA-RNA interaction. 
KSHV decreases the expression of toll-like receptor 4 
(TLR4) [23], however, HIV infection stimulates its 
expression [24]. Infection of KSHV can interfere with 
the expression of TLR4 induced by HIV infection, 
further sensing the presence of LPS [25]. Plus, KSHV 
can inhibit the recruitment of mononuclear leukocyte 
[26], which can be induced by HIV [27]. However, 
synergistic biological functions also stay in the corner. 
The KSHV ORF50-encoded reactivation and 
transcriptional activator (RTA) interacts 
synergistically with HIV-1 Tat protein in the 
transactivation of HIV-1 LTR, leading to increased 
cellular susceptibility to HIV infection [28]. In short, 
the study of KSHV-HIV interaction may reveal many 
other biological phenomena and functions.  

The research of Dr. Tan opened a novel niche to 
study the prolonged survival in KSHV-HIV 
concurrent infection, but there are still many 
challenges to draw a conclusion. For example, Dr. Tan 
should study how claudin-2 determines the cell fate 
during KSHV-HIV co-infection? What are the 
interactions between claudin-2 and other factors such 
as T cell responses? Further, it will be of significance 
to explore the potential of claudin-2 as an 
interventional target. 
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